モントリオール大/MILA・長沼さんとの共著論文 “An Empirical Investigation of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration” がICCV 2023 Workshop on Uncertainty Quantification for Computer Visionに採択されました.
国立がん研究センター・小林さんとの共著論文 “Towards AI-driven radiology education: A self-supervised segmentation-based framework for high-precision medical image editing” がMICCAI2023にオーラルとして採択されました.
6月にモントリオールのMILAを訪問します.バンクーバーで開催されるCVPRに参加します.
東京大学素粒子物理国際研究センターで招待講演を行います.
5月にジェノバのIITを訪問します.
AISTATSに参加します.
4月にVietnam Institute for Advanced Study in Mathematicsを訪問します.
3月にEPFL CIS・Fraunhofer IISを訪問します.
第4回理研AIP数学系合同セミナーに参加しました.
主著論文 “Nyström Method for Accurate and Scalable Implicit Differentiation” がAISTATS 2023に採択されました.京大・山田先生との共著です.
Ryuichiro Hataya, and Hideki Nakayama, “DJMix: Unsupervised Task-agnostic Image Augmentation for Improving Robustness of Convolutional Neural Networks,” International Joint Conference on Neural Networks, 2022.
Taiga Kashima, Ryuichiro Hataya, and Hideki Nakayama, “Visualizing Association in Exemplar-based Classification.” International Conference on Acoustics, Speech, and Signal Processing, 2021.
Ryuichiro Hataya, and Hideki Nakayama, “LOL: Learning To Optimize Loss Switching Under Label Noise.” International Conference on Image Processing, 2019.
Hiroki Naganuma${}^\star$, Ryuichiro Hataya${}^\star$, Ioannis Mitliagkas, “An Empirical Investigation of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration,” 2023. arXiv
Leonardo Placidi, Ryuichiro Hataya, Toshio Mori, Koki Aoyama, Hayata Morisaki, Kosuke Mitarai, and Keisuke Fujii, “MNISQ: A Large-Scale Quantum Circuit Dataset for Machine Learning on/for Quantum Computers in the NISQ era,” 2023. arXiv
Ryuichiro Hataya${}^\star$, and Yuka Hashimoto${}^\star$, “Noncommutative $C^\ast$-algebra Net: Learning Neural Networks with Powerful Product Structure in $C^\ast$-algebra,” 2023. arXiv
Ryuichiro Hataya, Hideki Nakayama, and Kazuki Yoshizoe, “Graph Energy-based Model for Substructure Preserving Molecular Design.” 2021. arxiv
Ryuichiro Hataya, Kota Matsui, Masaaki Imaizumi, “Automatic Domain Adaptation by Transformers in In-Context Learning, " ICML Workshop on In-Context Learning, 2024. (Peer Reviewed Short Paper)
Ryuichiro Hataya, Masaaki Imaizumi, “Transformers as Stochastic Optimizers,” ICML Workshop on In-Context Learning, 2024. (Peer Reviewed Short Paper)
Ryuichiro Hataya, Yuka Hashimoto, “Noncommutative $C^\ast$-algebra Nets,” International Conference on Quantum Techinques in Machine Learning, 2023. (Peer Reviewed Etended Abstract)
Hiroki Naganuma, Ryuichiro Hataya, “An Empirical Investigation of Pre-trained Model Selection for Out-of-Distribution Generalization and Calibration,” ICCV 2023 Workshop on Uncertainty Quantification for Computer Vision, 2023. (Peer Reviewed Etended Abstract arXiv)
Kazuma Kobayashi, Ryuichiro Hataya, Yusuke Kurose, Tatsuya Harada, and Ryuji Hamamoto, “Decomposing Normal and Abnormal Features of Medical Images for Content-based Image Retrieval.” Machine Learning for Health Workshop at NeurIPS 2020. (Peer Reviewed, Extended Abstract)
Ryuichiro Hataya, Kumiko Matsui, and Tomoki Karasawa, “Learning to Identify Large Fossils using Deep Convolutional Neural Networks”, Geological Society of America Abstracts with Programs. Vol 52, No. 6, 2020.
Ryuichiro Hataya, and Hideki Nakayama, “Unifying semi-supervised and robust leaning by mixup.” Workshop on Learning from Limited Labeled Data at ICLR 2019, 2019. (Peer Reviewed, Spotlight)